
Journal of Applied Mechanics and Technical Physics, Vol. 43, No. 2, pp. 291–301, 2002

DYNAMIC PLASTIC DAMAGE OF SIMPLY

AND DOUBLY CONNECTED ELLIPTIC PLATES

UDC 539.3Yu. V. Nemirovsky and T. P. Romanova

This paper studies the dynamic behavior of simply and doubly connected elliptic ideal rigid-plastic
plates with simply supported or clamped contours under short-time intensive dynamic loads. It is
shown that there are several mechanisms of dynamic deformation of plates. For each mechanism,
equations of the dynamic behavior are obtained. Operating conditions of these mechanisms are ana-
lyzed. Analytical expressions for the ultimate, “high” and “superhigh” loads and the maximum final
deflection are obtained. Numerical examples are given.

Elliptic plates are frequently used as plugs and protective elements in mechanical engineering. Little infor-
mation can be found in the literature on the analysis of these structures under high-intensity explosive loads [1].
In the present paper, a method of determining the final damage of simply and doubly connected elliptic plates
subjected to short-time intensive dynamic loads is proposed. The final deflection of the plates serves as a measure
of damage.

We consider a rigid-plastic plate with an elliptic contour l subjected to a uniformly distributed dynamic load
of intensity P (t). The plate contour can be simply supported or clamped.

Depending on the magnitude of the applied load, several mechanisms of dynamic deformation are possible.
Under loads lower than the ultimate values (“low” loads), the plate remains at rest. For loads slightly higher than
the ultimate values (“moderate” loads), as in the case of bending beams [2], circular and annular plates [3–8], and
rectangular and polygonal plates [2, 9–12], a linear plastic hinge l1 is formed and moves translationally in the plate
(segment AB in Fig. 1 that shows mechanism No. 1). As a result, the plate is deformed into a certain ruled surface.
For relatively high loads, the dynamics of the elliptic plate, as the dynamics of the structures mentioned above, can
be accompanied by appearance, development, and disappearance of the region S2 that moves translationally. For
“high” loads, the region S2 and a part of the hinge l1 exist simultaneously (mechanism No. 2 shown in Fig. 2). For
“superhigh” loads, the hinge l1 vanishes (mechanism No. 3 shown in Fig. 3).

In all the aforementioned cases, any normal to the contour l intersects either the hinge l1 or the curve l2,
i.e., the contour of the region S2.

We write the equation of the ellipse l in a parametric form x1 = a cosϕ and y1 = b sinϕ, where 0 6 ϕ 6 2π
and b 6 a. The distance from the point (x, y) ∈ Z to the hinge l1 measured along the normal to l is denoted by
d1(x, y), and the distance from the point (x, y) ∈ S1 to the curve l2 measured along l is denoted by d2(x, y) (Z is
the part of the plate defined in such a manner that the normal to l passing through an arbitrary point of this part
intersects l1, and S1 is the part of the plate defined in such a manner that the normal to l passing through an
arbitrary point of this part intersects l2) (see Figs. 1–3).

Since the plate is symmetric about the x and y axes and b 6 a, the hinge l1 is a linear segment lying on the
x axis: −x∗ 6 x 6 x∗. We draw a normal to the contour l so that it intersects the x axis. Let us calculate the
coordinates of the intersection point and determine their maximum value x∗.

The normal to the contour l at the point [x1(ϕ), y1(ϕ)] is defined by the equation

−a sinϕ(x− a cosϕ) + b cosϕ(y − b sinϕ) = 0. (1)
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Fig. 1

Fig. 2 Fig. 3

The angle between the normal to the contour l and the x axis is

ψ = arctan ((a/b) tan ϕ). (2)

Here xl = (a − b2/a) cosϕ, where (xl, 0) ∈ l1 (xl is the point of intersection of the normal and the x axis). Then,
x∗ = lim

ϕ→0
xl = a− b2/a.

The distance Dc from the point [x1(ϕ), y1(ϕ)] of the contour l to l1 is

Dc =
√

(x1(ϕ)− xl)2 + y2
1(ϕ) = bL(ϕ)/a, L(ϕ) =

√
a2 sin2 ϕ+ b2 cos2 ϕ. (3)

The minimum and maximum distances from l to l1 are determined by the formulas

Dmin = min
06ϕ6π

Dc(ϕ) = b2/a, Dmax = max
06ϕ6π

Dc(ϕ) = b.

We show that a line normal to l is also normal to l2. To this end, we approximate the contour l by a polygonal
contour l̄. For the polygonal plate obtained, the contour of the internal region, which moves translationally, becomes
a polygonal contour l̄2. The authors [11] showed that the segments of the internal contour l̄2 are parallel to the
corresponding segments of the contour l̄. Hence, as the number of segments of the polygonal contour l̄ tends to
infinity, the contour l̄2 becomes closer and closer to l2 and the normal to l at any point of this contour is also a
normal to l2.

To obtain the equation of the contour l2, we draw the normal to l from the point (x1, y1) ∈ l so that
it intersects l2. The distance between l and l2 is written as D = δR [R(ϕ) is the radius of curvature of l and
δ = δ(ϕ, t) > 0 is a dimensionless function]. The equation of l2 has the form

x2 = a cosϕ− δ(a cosϕ− ξ), y2 = b sinϕ− δ(b sinϕ− ζ).

Here ξ = [1− L2(ϕ)/a2]a cosϕ and ζ = [1− L2(ϕ)/b2]b sinϕ are the coordinates of the center of curvature of the
ellipse l at the point (x1, y1). Hence, we obtain

x2 = [1− δL2(ϕ)/a2]a cosϕ, y2 = [1− δL2(ϕ)/b2]b sinϕ. (4)

The normal to l is also the normal to l2. In this case, equality (1) holds for x = x2 and y = y2 and

x′2(a cosϕ− x2) + y′2(b sinϕ− y2) = 0, ( · )′ = ∂( · )/∂ϕ.
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This relation yields

x′2b cosϕ+ y′2a sinϕ = 0. (5)

Differentiating (4) and substituting the resulting relations into (5), we arrive at the equation for δ(ϕ, t)

δ′L4(ϕ) + 3δL2(ϕ)(a2 − b2) sinϕ cosϕ = 0.

Solving this equation, we obtain

δ = δ0ab/L
3, δ0 = δ0(t) > 0. (6)

The radius of curvature of the ellipse l is R(ϕ) = L3/(ab). It follows from (6) that

D = δ(ϕ, t)R(ϕ) = δ0(t). (7)

Consequently, the distance D between the curves l and l2 does not depend on the parameter ϕ. With
allowance for (6) and (7), Eq. (4) for l2 becomes

x2 = [a−Db/L(ϕ)] cosϕ, y2 = [b−Da/L(ϕ)] sinϕ.

The contour l2 is not elliptic for D > 0. For the curve l2 to have no mutually intersecting segments, the following
conditions must be satisfied: y2 > 0 for 0 < ϕ < π and y2 < 0 for π < ϕ < 2π. Therefore, for the values of D in
the interval (b2/a, b), the curve l2 is determined not for all values of ϕ. The case D > b corresponds to mechanism
No. 1, where the region S2 and the curve l2 are absent, the case b2/a < D 6 b corresponds to mechanism No. 2,
and the case D 6 b2/a corresponds to mechanism No. 3. In the case of a circular plate (a = b), mechanism No. 2
is skipped, and the hinge l1 degenerates into a point, the plate center.

In the general case, the plate is deformed according to mechanism No. 2. In the absence of the regions S2

and S1, this mechanism becomes mechanism No. 1. If the region Z is absent, mechanism No. 2 becomes mechanism
No. 3. Let us consider mechanism No. 2.

To obtain equations of motion of the plate, we use the virtual power principle and d’Alembert principle [13]:

K = A−N ; (8)

K =
∫∫
S

ρ
∂2u

∂t2
∂u∗

∂t
ds; (9)

A =
∫∫
S

P (t)
∂u∗

∂t
ds; (10)

N =
∑
m

∫
lm

Mm

[∂θ∗m
∂t

]
dl. (11)

Here K and A are the powers of inertial and external forces, respectively, S is the area of the plate, u is the
deflection, ρ is the surface density of the plate material, N is the power of the internal forces of the plate, t is the
current time, lm are the lines of discontinuity in the angular velocities, Mm is the bending moment on lm, and
[∂θ∗m/∂t] is the discontinuity in the angular velocity on lm. In the expression for N , summation is performed for
all lines of discontinuity in the angular velocity, including the plate boundary. The asterisk denotes the admissible
velocities.

Since the velocities on the boundaries of the region S2 and hinge l1 are continuous and their motion is
translational, the deflection rate in the region S2 is equal to that on l1. We denote it by ẇc(t).

According to [14], we write the power of internal forces (11) as

N = M0(2− η)
∮
l

∂u̇∗

∂n
dl, (12)

where M0 is the limiting bending moment, η = 0 for the clamped contour, η = 1 for the simply supported contour,
∂u̇/∂n is the derivative of the deflection rate with respect to the normal to the contour l or the angular velocity of
rotation of the plate surface relative to the horizontal plane at the contour l, dl is the element of the contour l, and
˙( · ) = ∂( · )/∂t.
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We denote the angle of rotation of the line EF [the boundary of the regions Z and S1 (see Fig. 2)] about l
by α. In the region S1, the plate rotates about the supporting contour through the angle

α2(t) = α(t). (13)

In the region Z, this angle is equal to α1. Since a part of the hinge l1 moves at a constant translational velocity,
we have

α1(t, ϕ) = αD/Dc. (14)

The position of the boundary EF is determined by the parameter ϕ = ϕ1. It follows from (3) that the length of EF
is

D = L(ϕ1)b/a. (15)

As a result, expression (12) for N becomes

N = M0(2− η)

[ ∫
∂Z

α̇∗
D

Dc
dl +

∫
∂S1

α̇∗ dl

]
.

The region Z is determined by the conditions 0 6 ϕ 6 ϕ1, π − ϕ1 6 ϕ 6 π + ϕ1, and 2π − ϕ1 6 ϕ 6 2π, and the
region S1 is determined by the conditions ϕ1 6 ϕ 6 π−ϕ1 and π+ϕ1 6 ϕ 6 2π−ϕ1. In the region Z, the angle ψ
varies within the intervals 0 6 ψ 6 ψ1, π − ψ1 6 ψ 6 π + ψ1, and 2π − ψ1 6 ψ 6 2π, where ψ1 = ψ(ϕ1) and ψ is
determined by (2). With allowance for (3), we obtain

∫
∂Z

α̇∗
D

Dc
dl = 4

ϕ1∫
0

(α̇∗D)

√
x′21 + y′21
Dc

dϕ = 4α̇∗Dϕ1
a

b
,

∫
∂S1

α̇∗ dl = 4α̇∗
π/2∫
ϕ1

L(ϕ) dϕ.

Then, the expression for N takes the form

N = 4M0(2− η)α̇∗
[
Dϕ1

a

b
+

π/2∫
ϕ1

L(ϕ) dϕ

]
. (16)

The deflection rate in the regions Z, S1, and S2 is given by

(x, y) ∈ Z: u̇ = α̇1d1, (x, y) ∈ S1: u̇ = α̇2d2, (x, y) ∈ S2: u̇ = ẇc. (17)

Expressions (9) and (10) become

K = ρ

[
α̇∗α̈D2

∫∫
Z

d2
1

D2
c

ds+ α̇∗α̈

∫∫
S1

d2
2 ds+ ẇ∗c ẅc

∫∫
S2

ds

]
; (18)

A = α̇∗

[
P (t)D

∫∫
Z

d1

D1
ds+ P (t)

∫∫
S1

d2 ds

]
+ ẇ∗cP (t)

∫∫
S2

ds. (19)

To calculate the double integrals over the regions Z and S1, we use the curvilinear orthogonal coordinate sys-
tem (v1, v2) related to the Cartesian coordinate system by the relations

x = [a− v1b/L(v2)] cos v2, y = [b− v1a/L(v2)] sin v2.

The curves v1 = const are at the distance v1 from the contour l. The lines v2 = const are normal to the elliptic
contour.

Substituting (16), (18), and (19) into (8) and taking into account that α̇∗ and ẇ∗c are independent, we obtain
the following equations of motion governing the deformation according to mechanism No. 2:

ρα̈DΣ1 = P (t)Σ2 − 12M0(2− η)Σ3; (20)

ρẅc = P (t). (21)
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Fig. 4

Here

Σ1 = (2a2 − b2)ϕ1 − (a2 − b2) sin 2ϕ1 +D
a

b

[
4

π/2∫
ϕ1

L(ϕ) dϕ− 3D
(π

2
− ψ1

)]
,

Σ2 = (3a2 − b2)ϕ1 − 1.5(a2 − b2) sin 2ϕ1 + 2D
a

b

[
3

π/2∫
ϕ1

L(ϕ) dϕ− 2D
(π

2
− ψ1

)]
,

Σ3 =

[
ϕ1 +

b

aD

π/2∫
ϕ1

L(ϕ) dϕ

]
a2

b2
.

Since the rates are continuous on the boundaries of the regions S1, S2 and S2, Z, then

α̇D = ẇc. (22)

System (15), (20)–(22) describes the plate deformation according to mechanism No. 2. In the case of
deformation according to mechanism No. 1, the regions S1 and S2 are absent, and the plate motion is described by
Eqs. (20) and (22) for ϕ1 = π/2 and D = b. If the plate is deformed according to mechanism No. 3, the region Z

is absent, and the behavior of the plate is governed by Eqs. (20)–(22) for ϕ1 = 0.
We consider the response of the plate to an impact load P (t), which gradually increases from zero to a

maximum value Pmax and, then, decreases monotonically.
At the initial time, the plate is at rest:

α(t0) = α̇(t0) = wc(t0) = ẇc(t0) = 0. (23)

If 0 < Pmax 6 P0 (“low” loads), where P0 is the ultimate load, the plate remains at rest. We determine the
quantity P0 from Eq. (20) for α̈(t0) = 0, ϕ1 = π/2, and D = b:

P0 = 12M0(2− η)/[b2(3− b2/a2)].

For a circular plate of radius R, the ultimate load is P0 = 6M0(2−η)/R2. In the simply supported case, this
value is equal to the exact value of the ultimate load P̄0 obtained in [3]. For the clamped contour, the ultimate load
calculated from the last formula is 2P̄0 compared to the approximate value 1.875P̄0 obtained in [5] using the Tresca
yield criterion. Figure 4 shows the ultimate load p0 versus the geometrical parameters of the ellipse (p0 = P0a

2/M0).
Curves 1 and 2 correspond to the simply supported and clamped contours, respectively.

The plate is deformed in accordance with mechanism No. 1 if P0 < Pmax 6 P1 (“moderate” loads), where
P1 is the load at which the regions S1 and S2 appear. To determine the load P1, we differentiate (22) and use the
resulting relation to eliminate ẅc and α̈ from (20) and (21). As a result, we have

−ρα̇ḊΣ1 = P (t)(Σ2 − Σ1)− 12M0(2− η)Σ3. (24)
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At the moment the regions S1 and S2 appear, the region Z occupies the entire plate and ϕ1 = π/2, D = b,
and Ḋ = 0. From (24), we obtain

P1 = 12M0(2− η)/b2 > P0. (25)

For the circular plate, Eq. (25) yields P1 = 2P0. In the simply supported case, this result coincides with
that obtained in [4, 6]. For the clamped contour, it was found that P1 = 1.998P0 (see [5]). Figure 4 shows the
load p1 versus the geometrical parameters of the ellipse (p1 = P1a

2/M0). Curves 3 and 4 correspond to the simply
supported and clamped contours, respectively.

For “moderate” loads, the plate motion is governed by Eqs. (20) and (22) for ϕ1 = π/2 and D = b with the
initial conditions (23), where t0 is determined under the condition P (t0) = P0. At the moment t = T , the load is
removed and the plate moves inertially for some time. The time when the plate comes to rest tf is determined from
the condition

ẇc(tf ) = 0 (26)

and it is given by the expression

tf = t0 +
1
P0

T∫
t0

P (t) dt. (27)

The deflections are calculated from (17) with allowance for (13) and (14). The final deflection at the plate center
is

wc(tf ) =
3− b2/a2

ρ(2− b2/a2)

[
1

2P0

( T∫
t0

P (t)dt

)2

−
T∫
t0

(t− t0)P (t) dt

]
.

For a simply supported circular plate, this result coincides with that obtained in [7].
If P1 < Pmax 6 P2 (“high” loads), where P2 is the load for which the region Z vanishes, mechanism Nos. 1,

2, and 1 operate in succession.
The first phase (t0 < t 6 t1). The times t0 and t1 are determined from the conditions P (t0) = P0 and

P (t1) = P1, respectively. The plate motion is described by Eqs. (20) and (22) for ϕ1 = π/2 and D = b with the
initial conditions (23). At the time t1, the regions S1 and S2 are formed. At this moment, the quantities α(t1),
α̇(t1), wc(t1), and ẇc(t1) are determined.

The second phase (t1 < t 6 t2). At this stage of motion, the regions S1 and S2 develop. The region S2

increases to a maximum size, then it decreases and vanishes at t2. In the process, the region Z decreases but
does not vanish. The plate motion is governed by Eqs. (15) and (20)–(22) subject to the initial conditions that
correspond to the end of the first phase. In this case, ϕ1(t1) = π/2 and D(t1) = Dmax = b.

At the time t∗ when the region S2 reaches the maximum size, the condition Ḋ(t∗) = 0 holds. For the load
considered, the region Z still exists and, hence, Dmin 6 D(t∗). Taking into account that the region Z is absent and
setting P (t∗) = P2, D(t∗) = Dmin = b2/a, and ϕ1 = 0, we determine the load P2 from (24). Using the approximate
formula [15]

π/2∫
0

L(ϕ) dϕ ≈ πQ

8
[Q = 3(a+ b)− 2

√
ab], (28)

we obtain

P2 =
6M0(2− η)

(b2/a)2[1− 2(b2/a)/Q]
.

For the circular plate, we have P1 = P2, i.e., the “high” and “superhigh” loads coincide. Figure 4 shows the load p2

versus the geometrical parameters of the ellipse (p2 = P2a
2/M0). Curves 5 and 6 refer to the simply supported and

clamped contours, respectively.
The second phase is completed at the time t2 when D(t2) = Dmax = b. At the end of the phase, the

quantities α(t2), α̇(t2), wc(t2), and ẇc(t2) are determined.
The third phase (t2 < t 6 tf ). The plate motion is described by Eqs. (20) and (22) for ϕ1 = π/2, D = b,

and the initial conditions that correspond to the end of the second phase. The moment the plate comes to rest is
determined from (26). The deflections of the plate are calculated from (13), (14), and (17) with allowance for all
phases of motion.
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Fig. 5

If Pmax > P2 (“superhigh” loads), mechanism Nos. 1–3 operate in succession. After reaching the maximum,
the load decreases monotonically and mechanism Nos. 2 and 1 operate in succession.

The first phase (t0 < t 6 t1). This phase corresponds to the first phase of motion under “high” loads and is
described by the same equations.

The second phase (t1 < t 6 t2). At this stage of motion, the regions S1 and S2 develop according to
mechanism No. 2, and the region Z decreases and vanishes at the time t2 determined from the relation P (t2) = P2.
The plate motion is described by Eqs. (15), and (20)–(22) subject to the initial conditions determined at the end
of the first phase. At the end of the second phase, the quantities α(t2), α̇(t2), wc(t2), and ẇc(t2) are calculated.

The third phase (t2 < t 6 t3). At this stage of motion, the plate is deformed in accordance with mechanism
No. 3. The behavior of the plate is described by Eqs. (20)–(22) for ϕ1 = 0 subject to the initial conditions determined
at the end of the second phase. At a certain time t∗∗, the region S2 reaches the maximum size. In this case, we
have D(t∗∗) = D∗∗ and Ḋ(t∗∗) = 0. Setting ϕ1 = 0 in (24) and using (28), we obtain

P (t∗∗)D2
∗∗(1− 2D∗∗/Q) = 6M0(2− η).

The time t3 (when the region Z is formed) is determined from the condition D(t3) = Dmin = b2/a. At the
end of the third phase, the quantities α(t3), α̇(t3), wc(t3), and ẇc(t3) are calculated.

The fourth phase (t3 < t 6 t4). At this stage of motion, the region S2 continues to decrease according to
mechanism No. 2. At the time t4, the region S2 vanishes and the region Z occupies the entire plate. The plate
motion is described by Eqs. (15) and (20)–(22) subject to the initial conditions determined at the end of the third
phase. The time t4 is determined from the condition D(t4) = Dmax = b. At the end of the fourth phase, the
quantities α(t4), α̇(t4), wc(t4), and ẇc(t4) are determined.

The fifth phase (t4 < t 6 tf ). At this stage, the plate is deformed according to mechanism No. 1 until it
comes to complete rest at the time tf determined from (26). The plate motion is described by Eqs. (20) and (22)
for ϕ1 = π/2 and D = b.

The deflections are determined by (13), (14), and (17) with allowance for all phases of motion. Figure 5
shows the curves w(x/a) and w(y/a) [w = ua2ρ/(M0T

2)] for the simply supported elliptic plate with the semiaxes
ratio b/a = 0.7, subjected to a “high” load represented by a rectangular pulse: P = 31.5M0/a

2 for 0 6 t 6 T and
P = 0 for t > T . Curves 1–3 refer to the deflections in the cross section x = 0 at the times t = T , t = tp = 1.39T ,
and t = tf = 3.34T , respectively (tp is the moment the region S2 vanishes). Curves 4–6 refer to the deflections in
the cross section y = 0 at the same moments.

Let us consider a plate with an elliptic contour l and a supported internal hole determined by the parametric
equations

x = [a− λb/L(ϕ)] cosϕ, y = [b− λa/L(ϕ)] sinϕ,

where λ is the distance from the external contour to the hole in the plate (0 < λ 6 b2/a and λ = const) (Fig. 6).
In this case, the equations of the boundaries Li (i = 1, 2) of the region S2, which moves translationally, are similar
to the equation of the curve l2 of the plate without a hole:

xli = [a−Dib/L(ϕ)] cosϕ, yli = [b−Dia/L(ϕ)] sinϕ.
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Fig. 6

Here Di is the distance from the contour l to the boundary Li and 0 < D1 6 D2 < λ (Fig. 6).
For the chosen shape of the internal contour, the region S2, which moves translationally, arrives simultane-

ously at all points of the curve l1 where the following equality holds:

D1 = D2. (29)

We denote the parts of the plate adjacent to the internal and external contours by S11 and S12, respectively.
Let βi (i = 1, 2) be the angle of rotation of the region S1i about the supported contour. As in the case of the simply
connected plate, the system of equations of motion of the doubly connected plate considered comprises Eq. (21)
and

ρβ̈1D1Σ11 = P (t)Σ12 − 12M0(2− η1)Σ13; (30)

ρβ̈2(λ−D2)Σ21 = P (t)Σ22 − 12M0(2− η2)Σ23; (31)

β̇1D1 = ẇc; (32)

β̇2(λ−D2) = ẇc, (33)

where ηi = 0 for the clamped contour and ηi = 1 for the simply supported contour (the subscripts i = 1 and 2 refer
to the external and internal contours, respectively),

Σ11(D1) = 4

π/2∫
0

L(ϕ) dϕ− 3D1
π

2
, Σ12(D1) = 2

(
3

π/2∫
0

L(ϕ) dϕ−D1π

)
,

Σ13(D1) = D−2
1

π/2∫
0

L(ϕ) dϕ, Σ21(D2) = 4

π/2∫
0

L(ϕ) dϕ− (λ+ 3D2)
π

2
,

Σ22(D2) = 2

(
3

π/2∫
0

L(ϕ) dϕ− (λ+ 2D1)π
2

)
, Σ23(D2) =

1
(λ−D2)2

( π/2∫
0

L(ϕ) dϕ− λπ

2

)
.

In the case where the region S2 degenerates into a curve, relation (29) is satisfied. The initial conditions have the
form

βi(t0) = β̇i(t0) = wc(t0) = ẇc(t0) = 0, Di(t0) = Di0 (i = 1, 2). (34)

The values of Di0 are determined below.
The ultimate load P ∗0 is determined from (30) and (31) by setting β̈i = 0 (i = 1, 2) and taking into

account (28). As a result, we have

P ∗0 =
6M0(2− η1)

D2
0(3− 8D0/Q)

,

where D0 is found from the relation
2− η1

D2
0(3− 8D0/Q)

=
(2− η2)(1− 4λ/Q)

(λ−D0)2[3− 4(λ+ 2D0)/Q]
.
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Let the plate be loaded by a rectangular pulse: P = const for 0 6 t 6 T and P = 0 for t > T . In this
case, the functions Di(t) (i = 1, 2) remain constant during loading. For 0 < P 6 P ∗0 (“low” loads), the plate is not
deformed and remains at rest. For P ∗0 < P 6 P ∗1 (“moderate” loads), the region S2 is absent. We determine the
load P ∗1 , for which the region S2 is formed. Differentiating (32) and (33) with respect to time with allowance for
(21) and substituting the resulting expressions into (30) and (31), we obtain

PΣ11 = PΣ12 − 12M0(2− η1)Σ13; (35)

PΣ21 = PΣ22 − 12M0(2− η2)Σ23. (36)

At the moment the region S2 is formed, relation (29) holds. Hence, Eqs. (28), (35), and (36) yield

P ∗0 =
6M0(2− η1)

D2
p(1− 2Dp/Q)

,

where Dp is the value of D1 for P = P ∗1 , which is determined from the relation

2− η1

D2
p(1− 2Dp/Q)

=
(2− η2)(1− 4λ/Q)

(λ−Dp)2[1− 2(λ+Dp)/Q]
.

For the “moderate” load, the motion of the doubly connected elliptic plate for 0 6 t 6 T (first phase) is
described by Eqs. (29)–(33) subject to the initial conditions (34), where the quantity D10 is determined as follows.
Differentiating (32) and (33) with respect to time, eliminating ẅc, and substituting relations (28)–(31) into the
resulting expression, we obtain the following equation forD10:

Pλ
(

1− 4D10

Q

)
= 6M0

[2− η1

D2
10

(
1− λ+ 3D10

Q

)
− 2− η2

(λ−D10)2

(
1− 4λ

Q

)(
1− 3D10

Q

)]
.

From the equations of motion, we find that

β̇1(t) =
tF

ρD10
, β̇2(t) =

tF

ρ(λ−D10)
, ẇc(t) =

tF

ρ
, β1(t) =

t2F

2ρD10
,

β2(t) =
t2F

2ρ(λ−D10)
, wc(t) =

t2F

2ρ
, F =

Σ12(D10)
Σ11 (D10)

(P − P ∗0 ).

At the end of the first phase (t = T ), we have

β̇1(T ) =
TF

ρD10
, β̇2(T ) =

TF

ρ(λ−D10)
, ẇc(T ) =

TF

ρ
,

(37)

β1(T ) =
T 2F

2ρD10
, β2(T ) =

T 2F

2ρ(λ−D10)
, wc(T ) =

T 2F

2ρ
.

In the second phase (T < t 6 tf ), the behavior of the plate is described by a system that comprises Eqs. (29),
(32), (33), and

ρβ̈1D1Σ11 = −12M0(2− η1)Σ13; (38)

ρβ̈2(λ−D1)Σ21 = −12M0(2− η2)Σ23 (39)

subject to the initial conditions (37) and D1(T ) = D10. Differentiating (32) and (33) with respect to time and
eliminating ẅc, we obtain

β̈2(λ−D1) = β̈1D1 + β̇1Ḋ1λ/(λ−D1).

This relation can be combined with (38) and (39) to give

Ḋ1
β̇1λ

λ−D1
=

12M0

ρ

( (2− η1)Σ13

Σ11
− (2− η2)Σ23

Σ21

)
. (40)

System (38)–(40) is solved by a numerical method. The moment at which the plate comes to rest is determined
from condition (26). It follows from (26), (32), and (38) that the quantity D1(tf ) = Df satisfies the equation

(2− η1)Σ13(Df )/Σ11(Df ) = (2− η2)Σ23(Df )/Σ21(Df ).
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Fig. 7

The deflections of the doubly connected elliptic plate are determined from the equations

(x, y) ∈ S11: u̇ = β̇1(t)d(x, y), (x, y) ∈ S12: u̇ = β̇2(t)d(x, y), (x, y) ∈ S2: u̇ = ẇc, (41)

where d(x, y) is the distance from the point (x, y) to the supporting part of the plate where this point is located.
A numerical analysis shows that the quantities D0, Dp, D10 (for P ∗0 6 P 6 P

∗
1 ), and Df differ only slightly.

Therefore, one can use an approximate analytical method based on the assumption that D1 = const to solve the
problem. In this case, system (29)–(33) is replaced by system (29), (30), (32), (33) with D1 = const, whose solution
has the form

wc(T ) =
3− 8D1/Q

4ρ(1− 3D1/Q)
T 2(P − P ∗0 ), wc(tf ) =

3− 8D1/Q

4ρ(1− 3D1/Q)
T 2P

2

P ∗0

(
1− P ∗0

P

)
, tf =

PT

P ∗0
.

The maximum final deflection obtained by solving system (29)–(33) by the Runge–Kutta method differs from
that determined by solving analytically system (29), (30), (32), (33) for D1 = (D0 + Dp)/2 by no more than 2%.
Figure 7 shows the curves w(x/a) calculated by the analytical method for a doubly connected elliptic plate loaded
by a “moderate” rectangular pulse: P = 37M0/a

2. The plate is characterized by the semiaxes ratio b/a = 0.8 and
λ = b2/a, and its both contours are simply supported. Curve 1 refers to the deflection at the time t = T and curve 2
to the moment the plate ceases to move t = tf = 1.97T .

The approximate system (29), (30), (32), (33) for D1 = const can be solved in the case of “moderate” loading
by a pulse of an arbitrary form: P (t0) = P ∗0 ; P (t) 6 P ∗1 for t0 6 t 6 T and P (t) = 0 for t > T . It follows from the
solution of this system that the time tf at which the plate comes to rest is determined from (27), and the maximum
final deflection is

wc(tf ) =
3− 8D1/Q

4ρ(1− 3D1/Q)

[
1
P0

( T∫
t0

P (t) dt

)2

− 2

T∫
t0

(t− t0)P (t) dt

]
.

For a “high” load (P > P ∗1 ), the first phase of motion of the doubly connected elliptic plate (0 6 t 6 T )
is described by Eqs. (21) and (30)–(33) subject to the initial conditions (34). The values of Di0 (i = 1, 2) are
determined from Eqs. (35) and (36). At the end of the first phase, we have

β̇1(T ) =
PT

ρD10
, β̇2(T ) =

PT

ρ(λ−D20)
, ẇc(T ) =

PT

ρ
,

(42)

β1(T ) =
PT 2

2ρD10
, β2(T ) =

PT 2

2ρ(λ−D20)
, wc(T ) =

PT 2

2ρ
.

In the second phase (T < t 6 t1), the region S2 is compressed and the plate motion is described by the
system of equations (32), (33), (38), (39), and

ẅc = 0 (43)

subject to the initial conditions (42). It follows from (43) that

ẇc(t) = ẇc(T ) = PT/ρ, (44)
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whence wc(t) = PTt/ρ. Differentiating (32) and (33) with respect to t, taking into account (43), and inserting the
resulting relations into (38) and (39) [with allowance for (32), (33), and (44)], we obtain

Ḋ1 = 12M0(2− η1)Σ13D1/(Σ11PT ), Ḋ2 = −12M0(2− η2)Σ23(λ−D2)/(Σ21PT ). (45)

System (38), (39), (45) is solved by a numerical method. The time t1 at which the region S2 vanishes is determined
from (29). At the end of the second phase, the quantities β̇i(t1), βi(t1) (i = 1, 2), ẇc(t1) = PT/ρ, and wc(t1) =
PTt1/ρ are determined.

In the third phase (t1 < t 6 tf ), the motion is similar to the motion in the second phase for a “moderate”
load.

The deflections of the plate are determined from (41) with allowance for all phases of motion.
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